Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2110866120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018201

RESUMO

Addressing climate change and biodiversity loss will be the defining ecological, political, and humanitarian challenge of our time. Alarmingly, policymakers face a narrowing window of opportunity to prevent the worst impacts, necessitating complex decisions about which land to set aside for biodiversity preservation. Yet, our ability to make these decisions is hindered by our limited capacity to predict how species will respond to synergistic drivers of extinction risk. We argue that a rapid integration of biogeography and behavioral ecology can meet these challenges because of the distinct, yet complementary levels of biological organization they address, scaling from individuals to populations, and from species and communities to continental biotas. This union of disciplines will advance efforts to predict biodiversity's responses to climate change and habitat loss through a deeper understanding of how biotic interactions and other behaviors modulate extinction risk, and how responses of individuals and populations impact the communities in which they are embedded. Fostering a rapid mobilization of expertise across behavioral ecology and biogeography is a critical step toward slowing biodiversity loss.


Assuntos
Biodiversidade , Ecossistema , Humanos , Biota , Mudança Climática , Ecologia
2.
Front Pharmacol ; 13: 846992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662692

RESUMO

Voltage-gated sodium channel NaV1.8 regulates transmission of pain signals to the brain. While NaV1.8 has the potential to serve as a drug target, the molecular mechanisms that shape NaV1.8 gating are not completely understood, particularly mechanisms that couple activation to inactivation. Interactions between toxin producing animals and their predators provide a novel approach for investigating NaV structure-function relationships. Arizona bark scorpions produce Na+ channel toxins that initiate pain signaling. However, in predatory grasshopper mice, toxins inhibit NaV1.8 currents and block pain signals. A screen of synthetic peptide toxins predicted from bark scorpion venom showed that peptide NaTx36 inhibited Na+ current recorded from a recombinant grasshopper mouse NaV1.8 channel (OtNaV1.8). Toxin NaTx36 hyperpolarized OtNaV1.8 activation, steady-state fast inactivation, and slow inactivation. Mutagenesis revealed that the first gating charge in the domain I (DI) S4 voltage sensor and an acidic amino acid (E) in the DII SS2 - S6 pore loop are critical for the inhibitory effects of NaTx36. Computational modeling showed that a DI S1 - S2 asparagine (N) stabilizes the NaTx36 - OtNaV1.8 complex while residues in the DI S3 - S4 linker and S4 voltage sensor form electrostatic interactions that allow a toxin glutamine (Q) to contact the first S4 gating charge. Surprisingly, the models predicted that NaTx36 contacts amino acids in the DII S5 - SS1 pore loop instead of the SS2 - S6 loop; the DII SS2 - S6 loop motif (QVSE) alters the conformation of the DII S5 - SS1 pore loop, enhancing allosteric interactions between toxin and the DII S5 - SS1 pore loop. Few toxins have been identified that modify NaV1.8 gating. Moreover, few toxins have been described that modify sodium channel gating via the DI S4 voltage sensor. Thus, NaTx36 and OtNaV1.8 provide tools for investigating the structure-activity relationship between channel activation and inactivation gating, and the connection to alternative pain phenotypes.

4.
Toxins (Basel) ; 13(7)2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34357973

RESUMO

The voltage-gated sodium channel Nav1.8 is linked to neuropathic and inflammatory pain, highlighting the potential to serve as a drug target. However, the biophysical mechanisms that regulate Nav1.8 activation and inactivation gating are not completely understood. Progress has been hindered by a lack of biochemical tools for examining Nav1.8 gating mechanisms. Arizona bark scorpion (Centruroides sculpturatus) venom proteins inhibit Nav1.8 and block pain in grasshopper mice (Onychomys torridus). These proteins provide tools for examining Nav1.8 structure-activity relationships. To identify proteins that inhibit Nav1.8 activity, venom samples were fractioned using liquid chromatography (reversed-phase and ion exchange). A recombinant Nav1.8 clone expressed in ND7/23 cells was used to identify subfractions that inhibited Nav1.8 Na+ current. Mass-spectrometry-based bottom-up proteomic analyses identified unique peptides from inhibitory subfractions. A search of the peptides against the AZ bark scorpion venom gland transcriptome revealed four novel proteins between 40 and 60% conserved with venom proteins from scorpions in four genera (Centruroides, Parabuthus, Androctonus, and Tityus). Ranging from 63 to 82 amino acids, each primary structure includes eight cysteines and a "CXCE" motif, where X = an aromatic residue (tryptophan, tyrosine, or phenylalanine). Electrophysiology data demonstrated that the inhibitory effects of bioactive subfractions can be removed by hyperpolarizing the channels, suggesting that proteins may function as gating modifiers as opposed to pore blockers.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Venenos de Escorpião/farmacologia , Escorpiões , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Arizona , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor , Peptídeos , Casca de Planta , Proteômica , Escorpiões/metabolismo
5.
Toxins (Basel) ; 12(4)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316477

RESUMO

Pain, though unpleasant, is adaptive in calling an animal's attention to potential tissue damage. A long list of animals representing diverse taxa possess venom-mediated, pain-inducing bites or stings that work by co-opting the pain-sensing pathways of potential enemies. Typically, such venoms include toxins that cause tissue damage or disrupt neuronal activity, rendering painful stings honest indicators of harm. But could pain alone be sufficient for deterring a hungry predator? Some venomologists have argued "no"; predators, in the absence of injury, would "see through" the bluff of a painful but otherwise benign sting or bite. Because most algogenic venoms are also toxic (although not vice versa), it has been difficult to disentangle the relative contributions of each component to predator deterrence. Southern grasshopper mice (Onychomys torridus) are voracious predators of arthropods, feeding on a diversity of scorpion species whose stings vary in painfulness, including painful Arizona bark scorpions (Centruroides sculpturatus) and essentially painless stripe-tailed scorpions (Paravaejovis spinigerus). Moreover, southern grasshopper mice have evolved resistance to the lethal toxins in bark scorpion venom, rendering a sting from these scorpions painful but harmless. Results from a series of laboratory experiments demonstrate that painful stings matter. Grasshopper mice preferred to prey on stripe-tailed scorpions rather than bark scorpions when both species could sting; the preference disappeared when each species had their stingers blocked. A painful sting therefore appears necessary for a scorpion to deter a hungry grasshopper mouse, but it may not always be sufficient: after first attacking and consuming a painless stripe-tailed scorpion, many grasshopper mice went on to attack, kill, and eat a bark scorpion even when the scorpion was capable of stinging. Defensive venoms that result in tissue damage or neurological dysfunction may, thus, be required to condition greater aversion than venoms causing pain alone.


Assuntos
Dor , Comportamento Predatório , Picadas de Escorpião , Venenos de Escorpião , Animais , Feminino , Masculino , Camundongos , Escorpiões
6.
Ecol Evol ; 9(22): 12886-12896, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788222

RESUMO

Behavioral barriers to gene flow often evolve faster than intrinsic incompatibilities and can eliminate the opportunity for hybridization between interfertile species. While acoustic signal divergence is a common driver of premating isolation in birds and insects, its contribution to speciation in mammals is less studied. Here we characterize the incidence of, and potential barriers to, hybridization among three closely related species of grasshopper mice (genus Onychomys). All three species use long-distance acoustic signals to attract and localize mates; Onychomys arenicola and Onychomys torridus are acoustically similar and morphologically cryptic whereas Onychomys leucogaster is larger and acoustically distinct. We used genotyping-by-sequencing (GBS) to test for evidence of introgression in 227 mice from allopatric and sympatric localities in the western United States and northern Mexico. We conducted laboratory mating trials for all species pairs to assess reproductive compatibility, and recorded vocalizations from O. arenicola and O. torridus in sympatry and allopatry to test for evidence of acoustic character displacement. Hybridization was rare in nature and, contrary to prior evidence for O. torridus/O. arenicola hybrids, only involved O. leucogaster and O. arenicola. In contrast, laboratory crosses between O. torridus and O. arenicola produced litters whereas O. leucogaster and O. arenicola crosses did not. Call fundamental frequency in O. torridus and O. arenicola was indistinguishable in allopatry but significantly differentiated in sympatry, a pattern consistent with reproductive character displacement. These results suggest that assortative mating based on a long-distance signal is an important isolating mechanism between O. torridus and O. arenicola and highlight the importance of behavioral barriers in determining the permeability of species boundaries.

7.
J Physiol ; 596(20): 4995-5016, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30132906

RESUMO

KEY POINTS: An ex vivo preparation was developed to record from single sensory fibres innervating the glabrous skin of the mouse forepaw. The density of mechanoreceptor innervation of the forepaw glabrous skin was found to be three times higher than that of hindpaw glabrous skin. Rapidly adapting mechanoreceptors that innervate Meissner's corpuscles were severalfold more responsive to slowly moving stimuli in the forepaw compared to those innervating hindpaw skin. We found a distinct group of small hairs in the centre of the mouse hindpaw glabrous skin that were exclusively innervated by directionally sensitive D-hair receptors. The directional sensitivity, but not the end-organ anatomy, were the opposite to D-hair receptors in the hairy skin. Glabrous skin hairs in the hindpaw are not ubiquitous in rodents, but occur in African and North American species that diverged more than 65 million years ago. ABSTRACT: Rodents use their forepaws to actively interact with their tactile environment. Studies on the physiology and anatomy of glabrous skin that makes up the majority of the forepaw are almost non-existent in the mouse. Here we developed a preparation to record from single sensory fibres of the forepaw and compared anatomical and physiological receptor properties to those of the hindpaw glabrous and hairy skin. We found that the mouse forepaw skin is equipped with a very high density of mechanoreceptors; >3 times more than hindpaw glabrous skin. In addition, rapidly adapting mechanoreceptors that innervate Meissner's corpuscles of the forepaw were severalfold more sensitive to slowly moving mechanical stimuli compared to their counterparts in the hindpaw glabrous skin. All other mechanoreceptor types as well as myelinated nociceptors had physiological properties that were invariant regardless of which skin area they occupied. We discovered a novel D-hair receptor innervating a small group of hairs in the middle of the hindpaw glabrous skin in mice. These glabrous skin D-hair receptors were direction sensitive albeit with an orientation sensitivity opposite to that described for hairy skin D-hair receptors. Glabrous skin hairs do not occur in all rodents, but are present in North American and African rodent species that diverged more than 65 million years ago. The function of these specialized hairs is unknown, but they are nevertheless evolutionarily very ancient. Our study reveals novel physiological specializations of mechanoreceptors in the glabrous skin that likely evolved to facilitate tactile exploration.


Assuntos
Membro Anterior/fisiologia , Mecanorreceptores/fisiologia , Pele/citologia , Tato , Animais , Evolução Biológica , Feminino , Membro Anterior/inervação , Masculino , Camundongos , Pele/inervação
8.
Arch Biochem Biophys ; 638: 52-57, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29258861

RESUMO

This study investigated geographic variability in the venom of Centruroides sculpturatus scorpions from different biotopes. Venom from scorpions collected from two different regions in Arizona; Santa Rita Foothills (SR) and Yarnell (Yar) were analyzed. We found differences between venoms, mainly in the two most abundant peptides; SR (CsEv2e and CsEv1f) and Yar (CsEv2 and CsEv1c) identified as natural variants of CsEv1 and CsEv2. Sequence analyses of these peptides revealed conservative amino acid changes between variants, which may underlie biological activity against arthropods. A third peptide (CsEv6) was highly abundant in the Yar venom compared to the SR venom. CsEv6 is a 67 amino acid peptide with 8 cysteines. CsEv6 did not exhibit toxicity to the three animal models tested. However, both venoms shared similarities in peptides that are predicted to deter predators. For example, both venoms expressed CsEI (lethal to chick) in similar abundance, while CsEd and CsEM1a (toxic to mammals) displayed only moderate variation in their abundance. Electrophysiological evaluation of CsEd and CsEM1a showed that both toxins act on the human sodium-channel subtype 1.6 (hNav 1.6). Complete sequencing revealed that both toxins are structurally similar to beta-toxins isolated from different Centruroides species that also target hNav 1.6.


Assuntos
Proteínas de Artrópodes , Variação Genética , Venenos de Escorpião , Escorpiões , Animais , Arizona , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/toxicidade , Células CHO , Galinhas , Cricetulus , Gryllidae , Células HEK293 , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/genética , Venenos de Escorpião/toxicidade , Escorpiões/química , Escorpiões/genética , Análise de Sequência de Proteína
9.
J Neurophysiol ; 117(3): 910-918, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927787

RESUMO

Mammalian neocortical circuits are functionally organized such that the selectivity of individual neurons systematically shifts across the cortical surface, forming a continuous map. Maps of the sensory space exist in cortex, such as retinotopic maps in the visual system or tonotopic maps in the auditory system, but other functional response properties also may be similarly organized. For example, many carnivores and primates possess a map for orientation selectivity in primary visual cortex (V1), whereas mice, rabbits, and the gray squirrel lack orientation maps. In this report we show that a carnivorous rodent with predatory behaviors, the grasshopper mouse (Onychomys arenicola), lacks a canonical columnar organization of orientation preference in V1; however, neighboring neurons within 50 µm exhibit related tuning preference. Using a combination of two-photon microscopy and extracellular electrophysiology, we demonstrate that the functional organization of visual cortical neurons in the grasshopper mouse is largely the same as in the C57/BL6 laboratory mouse. We also find similarity in the selectivity for stimulus orientation, direction, and spatial frequency. Our results suggest that the properties of V1 neurons across rodent species are largely conserved.NEW & NOTEWORTHY Carnivores and primates possess a map for orientation selectivity in primary visual cortex (V1), whereas rodents and lagomorphs lack this organization. We examine, for the first time, V1 of a wild carnivorous rodent with predatory behaviors, the grasshopper mouse (Onychomys arenicola). We demonstrate the cellular organization of V1 in the grasshopper mouse is largely the same as the C57/BL6 laboratory mouse, suggesting that V1 neuron properties across rodent species are largely conserved.


Assuntos
Neurônios/fisiologia , Comportamento Predatório/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Especificidade da Espécie , Vias Visuais/fisiologia
10.
Integr Comp Biol ; 56(5): 853-855, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27880677

RESUMO

What is Neuroecology? Animal behavior mediates many critical ecological processes that, in turn, have implications for the evolution of organismal interactions. Because the peripheral and central nervous systems ultimately control behavior, research in neuroecology seeks to link the neural basis of behavior with behavioral control of ecological interactions, and to determine how specific processes (e.g., environmental and genetic constraints, ecological and evolutionary forces) operating to alter nervous system function might constrain or facilitate adaptive behavior. Our goal for this symposium was to promote a general framework for neuroecology by exploring fundamental questions germane to this new area of research, and to develop a "toolbox" of techniques and approaches for addressing those questions. In the following series of papers, we provide a starting point for future work on neuroecology, including evolutionary context, the role of plasticity in shaping nervous system function and behavior, and an exploration of various sensorimotor systems that control ecological interactions. By promoting an integration of observational and experimental approaches at different levels of organization, we can reveal much about how the neural bases of behaviors influence interactions that occur under ecologically relevant contexts that would otherwise be impossible from isolated physiological, behavioral, or ecological components.


Assuntos
Comportamento Animal/fisiologia , Meio Ambiente , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Ecologia
11.
Curr Biol ; 25(21): R1023-R1026, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26528738

RESUMO

A Quick Guide on grasshopper mice which, contrary to the great majority of mouse species, are obligate carnivores.


Assuntos
Arvicolinae/fisiologia , Animais , Animais Selvagens/fisiologia , Comportamento Predatório
12.
Science ; 342(6157): 441-446, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24159039

RESUMO

Painful venoms are used to deter predators. Pain itself, however, can signal damage and thus serves an important adaptive function. Evolution to reduce general pain responses, although valuable for preying on venomous species, is rare, likely because it comes with the risk of reduced response to tissue damage. Bark scorpions capitalize on the protective pain pathway of predators by inflicting intensely painful stings. However, grasshopper mice regularly attack and consume bark scorpions, grooming only briefly when stung. Bark scorpion venom induces pain in many mammals (house mice, rats, humans) by activating the voltage-gated Na(+) channel Nav1.7, but has no effect on Nav1.8. Grasshopper mice Nav1.8 has amino acid variants that bind bark scorpion toxins and inhibit Na(+) currents, blocking action potential propagation and inducing analgesia. Thus, grasshopper mice have solved the predator-pain problem by using a toxin bound to a nontarget channel to block transmission of the pain signals the venom itself is initiating.


Assuntos
Arvicolinae/metabolismo , Cadeia Alimentar , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Dor/metabolismo , Comportamento Predatório , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Sequência de Aminoácidos , Animais , Formaldeído/farmacologia , Camundongos , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.8/química , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Dor/induzido quimicamente , Estrutura Terciária de Proteína , Venenos de Escorpião
13.
PLoS One ; 6(8): e23520, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21887265

RESUMO

BACKGROUND: Among scorpion species, the Buthidae produce the most deadly and painful venoms. However, little is known regarding the venom components that cause pain and their mechanism of action. Using a paw-licking assay (Mus musculus), this study compared the pain-inducing capabilities of venoms from two species of New World scorpion (Centruroides vittatus, C. exilicauda) belonging to the neurotoxin-producing family Buthidae with one species of non-neurotoxin producing scorpion (Vaejovis spinigerus) in the family Vaejovidae. A pain-inducing α-toxin (CvIV4) was isolated from the venom of C. vittatus and tested on five Na(+) channel isoforms. PRINCIPAL FINDINGS: C. vittatus and C. exilicauda venoms produced significantly more paw licking in Mus than V. spinigerus venom. CvIV4 produced paw licking in Mus equivalent to the effects of whole venom. CvIV4 slowed the fast inactivation of Na(v)1.7, a Na(+) channel expressed in peripheral pain-pathway neurons (nociceptors), but did not affect the Na(v)1.8-based sodium currents of these neurons. CvIV4 also slowed the fast inactivation of Na(v)1.2, Na(v)1.3 and Na(v)1.4. The effects of CvIV4 are similar to Old World α-toxins that target Na(v)1.7 (AahII, BmK MI, LqhIII, OD1), however the primary structure of CvIV4 is not similar to these toxins. Mutant Na(v)1.7 channels (D1586A and E1589Q, DIV S3-S4 linker) reduced but did not abolish the effects of CvIV4. CONCLUSIONS: This study: 1) agrees with anecdotal evidence suggesting that buthid venom is significantly more painful than non-neurotoxic venom; 2) demonstrates that New World buthids inflict painful stings via toxins that modulate Na(+) channels expressed in nociceptors; 3) reveals that Old and New World buthids employ similar mechanisms to produce pain. Old and New World α-toxins that target Na(v)1.7 have diverged in sequence, but the activity of these toxins is similar. Pain-inducing toxins may have evolved in a common ancestor. Alternatively, these toxins may be the product of convergent evolution.


Assuntos
Dor/patologia , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/toxicidade , Escorpiões/química , Sequência de Aminoácidos , Aminoácidos/metabolismo , Estruturas Animais/metabolismo , Animais , Sequência de Bases , Comportamento Animal/efeitos dos fármacos , Fracionamento Químico , DNA Complementar/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Dor/induzido quimicamente , Peptídeos/química , Peptídeos/isolamento & purificação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/genética , Análise de Sequência de Proteína , Canais de Sódio/química , Canais de Sódio/metabolismo
14.
Toxicon ; 52(5): 597-605, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18687353

RESUMO

Predators feeding on toxic prey may evolve physiological resistance to the preys' toxins. Grasshopper mice (Onychomys spp.) are voracious predators of scorpions in North American deserts. Two species of grasshopper mice (Onychomys torridus and Onychomys arenicola) are broadly sympatric with two species of potentially lethal bark scorpion (Centruroides exilicauda and Centruroides vittatus) in the Sonoran and Chihuahuan deserts, respectively. Bark scorpions produce toxins that selectively bind sodium (Na(+)) and potassium (K(+)) ion channels in vertebrate nerve and muscle tissue. We previously reported that grasshopper mice showed no effects of bark scorpion envenomation following natural stings. Here we conducted a series of toxicity tests to determine whether grasshopper mice have evolved resistance to bark scorpion neurotoxins. Five populations of grasshopper mice, either sympatric with or allopatric to bark scorpions, were injected with bark scorpion venom; LD50s were estimated for each population. All five populations of grasshopper mice demonstrated levels of venom resistance greater than that reported for non-resistant Mus musculus. Moreover, venom resistance in the mice showed intra- and interspecific variability that covaried with bark scorpion sympatry and allopatry, patterns consistent with the hypothesis that venom resistance in grasshopper mice is an adaptive response to feeding on their neurotoxic prey.


Assuntos
Adaptação Fisiológica , Arvicolinae/fisiologia , Neurotoxinas/toxicidade , Venenos de Escorpião/toxicidade , Animais , Dose Letal Mediana , Especificidade da Espécie
15.
J Exp Zool A Comp Exp Biol ; 303(8): 643-56, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16013049

RESUMO

Aromatase cytochrome P450 (P450arom) is the enzyme complex responsible for conversion of androgens to estrogens in vertebrates. Consequently, in some fishes its activity appears critical to ovarian differentiation. Southern flounder (Paralichthys lethostigma) is a commercially important flatfish in which females grow larger than males and sex determination is temperature sensitive. Through cloning of the P450arom gene in ovary and quantitative reverse transcription-polymerase chain reaction, we developed a biomarker for early female differentiation in southern flounder. The deduced amino acid sequence for southern flounder P450arom is similar to other teleosts. Comparison of P450arom intron sequences from fish of different populations revealed substantial inter-individual variation. Adult ovary and spleen exhibited high levels of P450arom mRNA, while P450arom mRNA was only weakly detected in testes. Brain, liver, intestine, kidney, gill, muscle, and heart showed little or no P450arom mRNA expression. Gonads of wild and hatchery-produced juvenile flounder of sizes spanning the period of sex differentiation initially exhibited low levels of P450arom mRNA followed by increases in some individuals and bifurcation into two clearly segregated groups (i.e., putative males and females) beginning at approximately 65 mm in total length. Gonadal histology confirmed predictions of sex based on P450arom expression in juvenile flounder, demonstrating that the patterns of P450arom expression observed relate to sex-specific differentiation. This research represents a unique approach to assessing sex differentiation in a natural population, and a powerful technique for better understanding mechanisms of flounder sex determination and rapidly defining conditions for controlling sex for aquaculture.


Assuntos
Aromatase/genética , Aromatase/metabolismo , Linguado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Íntrons/genética , Sequência de Aminoácidos , Animais , Aromatase/química , Sequência de Bases , Clonagem Molecular , Feminino , Linguado/genética , Regulação Enzimológica da Expressão Gênica , Variação Genética , Masculino , Dados de Sequência Molecular , Filogenia , RNA Mensageiro , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...